
Analyzing Enron Data: A Performance Comparison of MySQL with FastBit

Kurt Stockinger, Doron Rotem, Arie Shoshani, Kesheng Wu
Computational Research Division

Lawrence Berkeley National Laboratory
University of California

1 Cyclotron Road, Berkeley, CA 94720, USA

Abstract

In this article we evaluate the performance of MySQL
and FastBit for analyzing the email traffic of the Enron data
set. The first findings shows that materializing the join re-
sults of several tables significantly improves the query per-
formance. Finally, FastBit outperforms MySQL several or-
ders of magnitude.

1 Introduction

The Enron data set was used by various researchers in
the area of social network analysis to discover patterns in
the data. Theses patterns are usually visualized by com-
plex graph algorithms. However, due to the large amount
of social network data, the pattern finding and visualiza-
tion algorithms often take a long time to terminate. In or-
der to reduce the time complexity of these algorithms, it
is often important to pre-filter the results based on multi-
dimensional criteria such as “Retrieve all emails that were
sent by person P at time T”. In this article we will show that
multi-dimensional bitmap indices significantly improve the
performance of these types of queries.

For our performance evaluation we use the Enron data
set that was prepared by Shetty and Adibi [2]. All the data
is stored in MySQL containing the following four tables:
employeeList, message, recipientInfo, referenceInfo. In to-
tal, the data set contains some 250,000 message from 151
Enron employees that were recorded over the lifetime of a
few years. For further details about the data set we refer the
reader to [2].

In this article we compare the performance of MySQL
with FastBit [1], an efficient, compressed bitmap indexing
technology that was developed in our group.

2 Performance Results - Original Data Set

In our first set of experiments we measured the perfor-
mance of searching for specificsendersandreceiversof the
emails. We thus built an index for each of these two at-
tributes. Since both senders and receivers are in different
database tables, this kind of search requires an expensive
join operation. The next step was to materialize the join
and store the results in an additional table that we callmate-
rialized table. The newly created table contains some 2 mil-
lion records. Remember, the number of original messages
was 250,000 which indicates that, on average, each message
contains 8 recipients. We also built indices forsenderand
receiveron the materialized table.

In order to build bitmap indices for the materialized ta-
ble, we needed to export the date into binary files. In partic-
ular, we stored each attribute in a separate file and then built
a bitmap index for the attributessenderandreceiver.

Next we measured the performance of queries of the
form “Retrieve the recipients of all emails that were sent
by personP ”. For these experiments we randomly selected
100 persons from the tableemployeeListand executed a
query for each person. In total we ran 100 queries and mea-
sured the time including the result retrieval (number of hits).

Figure 1 shows the performance of three different access
plans, namelyMySQL - Join, MySQL - Materializedand
FastBit. We can see that the query that is based on joining
two tables takes the most time. We can also see that the
response time is independent of the number of hits.FastBit
shows the best query response time and is a factor of 10 to
100 faster thanMySQL - Materialized.

Next we measured the performance of queries of the
form “Retrieve all senders of emails that were received by
personP ”. Similar to the previous experiments, we ran-
domly selected 100 persons. Figure 2 shows that this time
the difference betweenMySQL - JoinandMySQL - Mate-
rialized is much smaller. The reason is that the number of
hits is much smaller than in the previous experiments and
thus the join operation is less expensive. However,FastBit



Figure 1. Performance of query: “Retrieve the
recipients of all emails that were sent by per-
son P ”.

is again up to a factor of 100 faster thanMySQL - Material-
ized.

Figure 2. Performance of query: “Retrieve the
senders of all emails that were received by
person P ”.

Due to the better performance of the access planMySQL
- Materialized, for the remaining experiments we only use
this access plan and compare it withFastBit.

Our next experiments evaluate the performance of the
following queries: a) “Find all emails that were sent every
day before timeT . b) “Find all emails that were sent before
dateD”. For performance reasons we split the attributedate
of the original tablemessageinto the basic components of

dateandtimeand built indices.
The performance of these queries is shown in Figures 3

and 4. Again we see thatFastBitshows better performance
characterstics than MySQL. In particular, we can observe
that the performance ofMySQL - Materializeddepends on
the number of hits whereas the performance ofFastBit is
about constant.

Figure 3. “Find all emails that were sent every
day before time T .

Figure 4. “Find all emails that were sent be-
fore date D”.

3 Performance Results - Duplicated Data Set

In the next experiments we measured the query perfor-
mance of a larger data set. We thus duplicated the Enron



data set 10 times. The resulting materialized table contains
some 20 million records.

Figures 5 through 7 show the performance of queries
with one specific search criterion. Similar to the previous
experiments, FastBit is up to a factor of 100 faster than
MySQL.

Figure 5. “Find all emails that were sent by
person P ”.

Figure 6. “Find all emails that were received
by person P ”.

In our last set of experiments we measured the per-
formance of queries with multiple search criteria (multi-
dimensional queries). A typical query of this kind is “Find
all emails that were sent by personP in the time intervalT
before dateD”. The results of two and three dimensional

Figure 7. “Find all emails that were sent be-
fore date D”.

queries are shown in Figures 8 and 9. We notice that as the
number of query dimensions increases, the relative perfor-
mance improvement of FastBit over MySQL increases even
more. For these types of queries, FastBit is even up to a
factor of 1000 faster than MySQL.

Figure 8. “Find all emails that were sent by
person P before data D”.

4 Conclusions

In this article we evaluated the performance of MySQL
and FastBit for queries on the Enron data set. Our first
findings show that queries on materialized tables provide a



Figure 9. “Find all emails that were sent by
person P before data D and time T ”.

significant performance improvement since expensive join
operations are avoided. We also demonstrated that Fast-
Bit outperforms MySQL up to a factor of 1000 for multi-
dimensional queries.

In the future we will work onneighborhood queries
that are of particular importance for analyzing message
flows/chains within groups. Typical queries are “Find all
the emails that personA sent to personB. Next, find all
emails that personB received fromA and sent to person
C”. By analyzing these kinds of messages one can dis-
cover indirect relationships between personA and person
C. Moreover, the message frequency and the message date
might also reveal some important characteristics. In order
to quickly search through this information, efficient, multi-
dimensional indexing as described in this article is very im-
portant.

Acknowledgment

The work was funded by the Department of Homeland
Security under grant XXX.

References

[1] FastBit, http://sdm.lbl.gov/fastbit . Jan.
2006.

[2] J. Shetty, J. Adibi, The Enron Email Dataset, Database
Schema and Brief Statistical Report, Retrieved from
http://www.isi.edu/˜adibi/Enron/Enron
Dataset Report.pdf , Jan. 2006


